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Returns

• The classical definition of return on an investment is

return =
final value − initial value

initial value
.

• Suppose we wish to calculate the average annual return of an
investment over several years, where the annual returns are
given by r1, r2, . . . , rn.

• Several common methods are available.

1. Arithmetic return:
1

n

(
(1 + r1) + · · ·+ (1 + rn)

)
− 1.

2. Geometric return: n
√

(1 + r1)× · · · × (1 + rn)− 1.

3. Logarithmic return:
1

n

(
log(1 + r1) + · · ·+ log(1 + rn)

)
.
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Poll A

(How) are the different returns ordered?

1. Arithmetic return always greater than geometric and
logarithmic returns; not more can be said.

2. Arithmetic return always greater than geometric return, which
is always larger than logarithmic return.

3. The ordering depends on the series (r1, r2, . . .).



Different averages

1. Arithmetic return:
1

n

(
(1 + r1) + · · ·+ (1 + rn)

)
− 1.

Used in Modern Portfolio Theory. Compatible with the linear
models used to calculate the Sharpe ratio and beta. But leads
to absurd estimates in some cases.

2. Geometric return: n
√

(1 + r1)× · · · × (1 + rn)− 1.
Sometimes very difficult to compute.

3. Logarithmic return:
1

n

(
log(1 + r1) + · · ·+ log(1 + rn)

)
. Used

in stochastic portfolio theory.

Jensen’s inequality yields

arithmetic return ≥ geometric return ≥ logarithmic return.
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The dynamics of return
Let S(t) represent the price of a stock at time t. Assume that

dS(t) = S(t)
[
bdt + σdW (t)

]
.

Then b is called the rate of return of S .

• Itô’s formula implies that

d log S(t) = g dt + σdW (t),

where g = b− 1
2σ

2 is the rate of log-return, or growth rate, of
S . This ‘volatility drag’ in words:

log-return of stock ≈ return of stock− variance of return

2
.

• The process g determines the long-term behavior of S :

lim
T↑∞

1

T
log S(T ) = g .

ABC
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Portfolio return and log-return
Suppose we have assets S1, . . . ,Sd and a portfolio π with weights
π1(t) + · · ·+ πd(t) = 1 and value V π(t) at time t. Then the
portfolio return satisfies

dV π(t)

V π(t)
=

d∑
i=1

πi (t)
dSi (t)

Si (t)

(Markowitz (1952)).

The analogous equation for log-return is

d logV π(t) =
d∑

i=1

πi (t)d log Si (t) + γ∗π(t)dt,

where γ∗π ≥ 0 if the portfolio is long-only. (Fernholz and Shay
(1982)).

γ∗π depends only on the covariance structure of S .
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Details: the dynamics of portfolio log-return

d logV π(t) =
dV π(t)

V π(t)
− 1

2
σ2π(t)dt

=
d∑

i=1

πi (t)
dSi (t)

Si (t)
− 1

2
σ2π(t) dt

=
d∑

i=1

πi (t)
(
d log Si (t) +

1

2
σ2i (t)dt

)
− 1

2
σ2π(t) dt

=
d∑

i=1

πi (t)d log Si (t) + γ∗π(t)dt,

with γ∗π(t) =
1

2

( d∑
i=1

πi (t)σ2i (t)− σ2π(t)
)
.



Decomposition of portfolio log-return

There is a natural decomposition of the log-return of a portfolio
into two components. For the interval [0,T ],

Log-return =

∫ T

0

d∑
i=1

πi (t) d log Si (t) +

∫ T

0
γ∗π(t)dt

=: Aπ(T ) + Γπ(T )

In words:

Log-return = weighted average stock log-return

+ excess growth rate;

EGR =
weighted average stock variance− portfolio variance

2
.
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An important empirical property of equity markets

Figure: The capital distribution curve — Market weights against ranks on
logarithmic scale, 1926–2016.



Poll B

How many companies were at some point the largest (in the
US market) since 1926? (Currently Apple is the largest.)

1. 6

2. 11

3. 19

4. 32



Answer: 11

Largest at some point:

• Amazon

• Apple

• ATT

• DuPont

• Exxon

• GE

• GM

• IBM

• Microsoft

• Philip Morris

• Walmart



Rank-based analysis of logarithmic returns

• Let rt(i) be the rank of Si (t).

• Define the average rank-based growth rates gk over [0,T ] by

gk =
1

T

∫ T

0

∑
1{rt(i)=k}d log Si (t).



Estimated g k , 1962–2016



Sample variance of logarithmic returns



Rank-based analysis of logarithmic returns

In a stable system:

E
[
d logXi (t)

∣∣rt(i) = k
]

= gkdt ≈ gdt.

Hence,

E
[
Aπ(T )

]
= E

[∫ T

0

d∑
i=1

πi (t)d logXi (t)

]

'
∫ T

0

d∑
i=1

E
[
πi (t)

]
E
[
d logXi (t)

]
'
∫ T

0

d∑
i=1

E
[
πi (t)

]
gdt

= Tg .



A paper on “surprising alpha”

Arnott et al. (2013) test several näıve, non-optimized portfolio
strategies versus a capitalization-weighted benchmark of the
largest 1000 U.S. stocks over the period from 1964 to 2012.

• All tested strategies have a higher return than the benchmark,
and most have a higher Sharpe ratio.

• Capitalization-weighted portfolios are not well diversified.

• All tested strategies have more diversification into the smaller
stocks than the capitalization-weighted index.



Our experimental setup

• We run an experiment on the largest 1000 U.S. stocks,

• using overlapping one-year periods starting each month from
1964-2012 (similar in spirit to Arnott (2013)).

• At the beginning of each month we choose the largest 1000
U.S. stocks and use their one-year returns over the following
year to compute the strategy returns.

• Altogether there are 5384 different stocks which were, at the
beginning of some month during this 49-year period, among
the top 1000 stocks by market capitalization in the U.S.



5 representative näıve strategies

We implement the following strategies.

1. Capitalization-weighted (CW): stock weights proportional
to their market capitalization.

2. Equal-weighted (EW): weight of each stock = 1/1000.

3. Large-overweighted (LO): stock weights proportional to the
square of their market capitalization.

4. Random-weighted (RW): weights proportional to
[0, 1]–uniformly distributed random variables.

5. Inverse-random-weighted (IRW): weights proportional to
the reciprocals of [0, 1]–uniformly distributed random
variables.



Poll C

Among these five strategies, which strategies perform best
between 1964 and 2012 in the above setup (in particular,
without transaction costs). Say in terms of the largest
Sharpe ratio?

1. Random-weighted and Equal-weighted

2. Large-overweighted

3. Random-weighted and Inverse-random-weighted

4. Capitalization-weighted



The results

CW(%) EW(%) LO(%) RW(%) IRW(%)

Log-return 9.12 10.98 7.46 10.98 10.46
v. CW 1.86 -1.66 1.86 1.34

Aπ(T ) 5.57 5.64 5.36 5.65 5.67
v. CW .07 -.21 .08 .10

Γπ(T) 3.87 5.82 2.19 5.82 5.18
v. CW 1.95 -1.68 1.95 1.31

Arithmetic 10.97 13.33 9.15 13.33 13.34
v. CW 2.36 -1.82 2.36 2.37

σπ 17.07 19.14 16.90 19.07 22.35
S.R. .29 .38 .18 .38 .32

Table 1. CW = cap weight, EW = equal weight, LO = large-overweighted,
RW = random weight, IRW = inverse random weight, S.R. = Sharpe ratio.



Conclusions

• The logarithmic return of a portfolio can be decomposed into
two elements:
• weighted average of the logarithmic returns of the stocks;
• excess growth: depends only on the variances and covariances

of the constituents, and is larger for more diversified portfolios.

• Most of the differences in the strategies’ returns can be
explained by differences in the excess growth component.



Many thanks!


